

Efficacy and Safety of Bulevirtide Monotherapy Given at 2 mg or 10 mg Dose Level Once Daily for Treatment of Chronic Hepatitis Delta: Week 48 Primary Endpoint Results From a Phase 3 Randomized, Multicenter, Parallel Design Study

Heiner Wedemeyer,¹ Soo Aleman,² Maurizia Brunetto,³ Antje Blank,⁴ Pietro Andreone,⁵ Pavel Bogomolov,⁶ Vladimir Chulanov,⁷ Nina Mamonova,⁷ Natalia Geyvandova,⁸ Viacheslav Morozov,⁹ Olga Sagalova,¹⁰ Tatyana Stepanova,¹¹ Jacques Yu¹², Dmitry Manuilov,¹² Vithika Suri,¹² Qi An,¹² John F. Flaherty,¹²

¹Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover, Hannover, Germany; ²Karolinska University Hospital/Karolinska Institutet, Stockholm, Sweden; ³University Hospital of Pisa and Dept of Clinical and Experimental Medicine, University of Pisa, Italy; ⁴Heidelberg University Hospital, Heidelberg, Germany; ⁵University of Modena and Reggio Emilia, Italy; ⁶M.F. Vladimirsky Moscow Regional Research and Clinical Institute, Moscow, Russian Federation; ⁷FSB National Research Medical Center for Phthisiopulmonology and Infectious Diseases of the Ministry of Health of the Russian Federation, Moscow, Russian Federation; ⁸Stavropol Regional Hospital, Stavropol, Russian Federation; ⁹LLC Medical Company "Hepatolog", Samara, Russian Federation; ¹⁰Southern Ural State Medical University, Chelyabinsk, Russian Federation; ¹¹Clinic of Modern Medicine, Moscow, Russian Federation; ¹²Gilead Sciences, Inc., Foster City, California, USA; ¹³Universitätsklinikum Hamburg-Eppendorf Medizinische Klinik Studienambulanz Hepatologie, Hamburg, Germany; ¹⁴University Hospital Frankfurt, Frankfurt am Main, Germany; ¹⁵Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 16 A.M. e A. Migliavacca¹⁶Center for the Study of Liver Disease, Università degli Studi di Milano, Italy

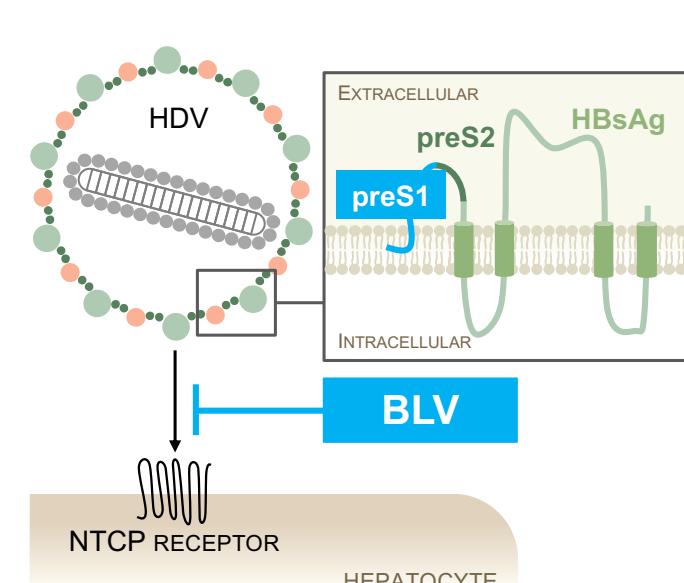
Conclusions

- Treatment with BLV was superior to control as assessed by the combined biochemical and viral response at Week 48
 - BLV 10 mg results do not support an efficacy advantage vs BLV 2 mg
 - Treatment benefit was consistent across subgroups including patients with cirrhosis
- The proportion with undetectable HDV RNA was similar between the BLV 2 mg and 10 mg groups at Week 48
- Both treatment groups showed greater liver stiffness responses compared to delayed treatment
- No resistance development to BLV was observed through 48 weeks; poster 1406/SAT385 (Hollnberger J. et al) presents detailed analysis
- BLV 2 mg was safe and efficacious over 48-week treatment

References:
1. Rizzetto M, et al. J Infect Dis 1980;141:590-602; 2. Stockdale AJ, et al. J Hepatol 2020;73:523-32; 3. Wedemeyer H, et al. Nat Rev Gastroenterol Hepatol 2010;7:31-40; 4. Alfieri D, et al. J Hepatol 2020 Sep;73(3):533-539; 5. Rizzetto M, et al. J Hepatol 2021;74(5):1200-1211; 6. Fattovich G, et al. Gut 2000;46:420-6; 7. Romeo R, et al. Gastroenterology 2009;136:1629-38; 8. Asselah T, et al. Liver International 2020;40:S1-54-60; 9. Ni Y, et al. Gastroenterology 2014;146:1070-83; 10. Wedemeyer H, et al. Lancet Infect Dis. 2022 (accepted for publication); 11. Wedemeyer H, et al. EASL 2020, #AS072; 12. Wedemeyer H, et al. EASL 2021, poster 2730.

Acknowledgments:
We extend our thanks to the patients, their families, and all participating investigators. This study was funded by Gilead Sciences. Editing and production assistance were provided by BioScience Communications, New York, New York, USA, funded by Gilead.

Introduction

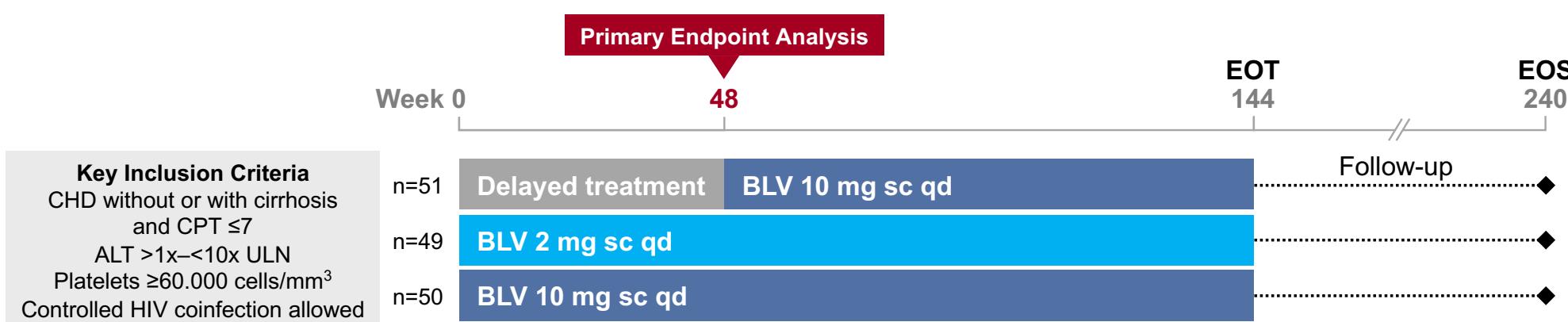

Hepatitis Delta Virus (HDV) Background

- HDV is a satellite virus of HBV and requires HBV envelope proteins to infect hepatocytes and propagate¹
- Approximately 12 million people are infected with HDV worldwide²
- HDV causes the most severe form of chronic viral hepatitis,^{3,4,5} with 2-3-fold increased risk of mortality compared to HBV mono-infection^{6,7}
- Achieving HDV viral control or cure of CHD is an unmet medical need⁸

ALT, alanine aminotransferase; CHD, chronic hepatitis delta; HBV, hepatitis B virus.

Bulevirtide (BLV)

- First-in-class entry inhibitor for treatment of CHD
- Linear 47-amino acid chemically synthesized lipopeptide
- Specifically binds to NTCP at the basolateral membrane of hepatocytes; NTCP is used by HBV and HDV to enter hepatocytes⁹
- Conditionally approved in Europe in July 2020 for treatment of compensated CHD based on completed phase 2 studies^{10,11}


HBsAg, hepatitis B surface antigen; NTCP, sodium taurocholate cotransporting polypeptide.

MYR301 Study Objective

- To evaluate the efficacy and safety of BLV monotherapy given subcutaneously at 2 mg or 10 mg once daily for treatment of chronic hepatitis delta compared to no anti-HDV treatment for 48 Weeks (delayed treatment)

Methods

MYR301 Study Design

Multicenter, open-label, randomized, Phase 3 study (ClinicalTrials.gov NCT03852719) conducted in 4 countries (Germany, Italy, Russian Federation, and Sweden)

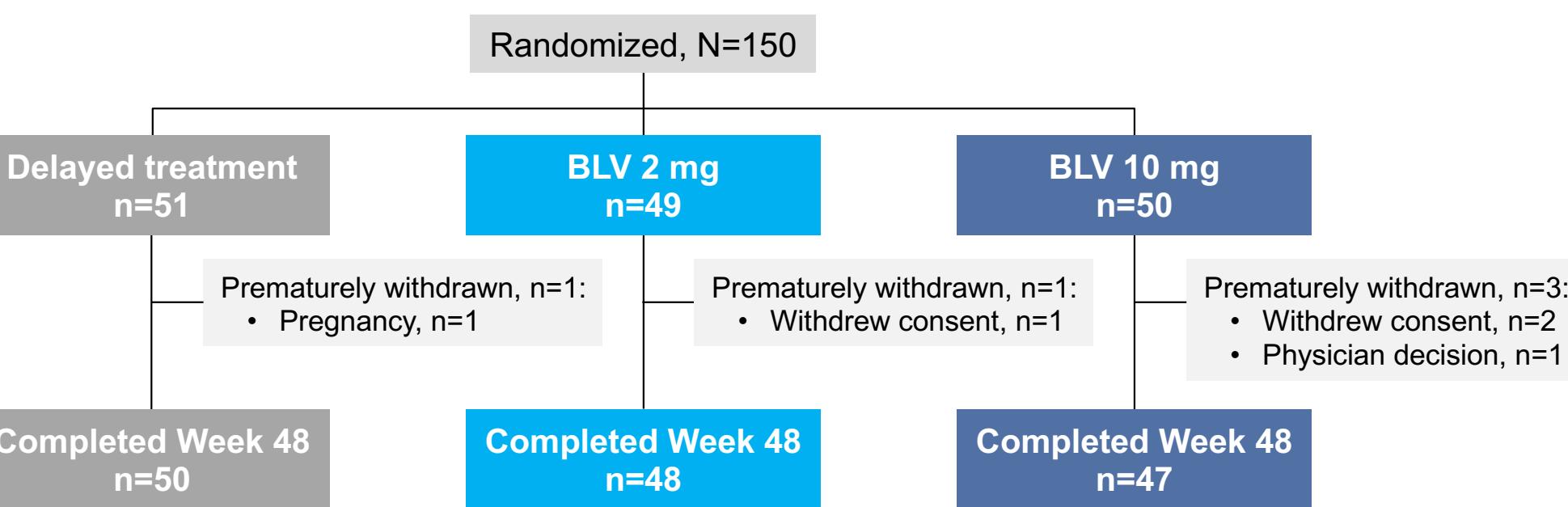
Primary Endpoint

- Combined response at Week 48: HDV RNA undetectable or decrease by $\geq 2 \log_{10}$ IU/mL from baseline and ALT normalization (FDA draft guidance for development of HDV treatment¹)

Secondary Endpoints

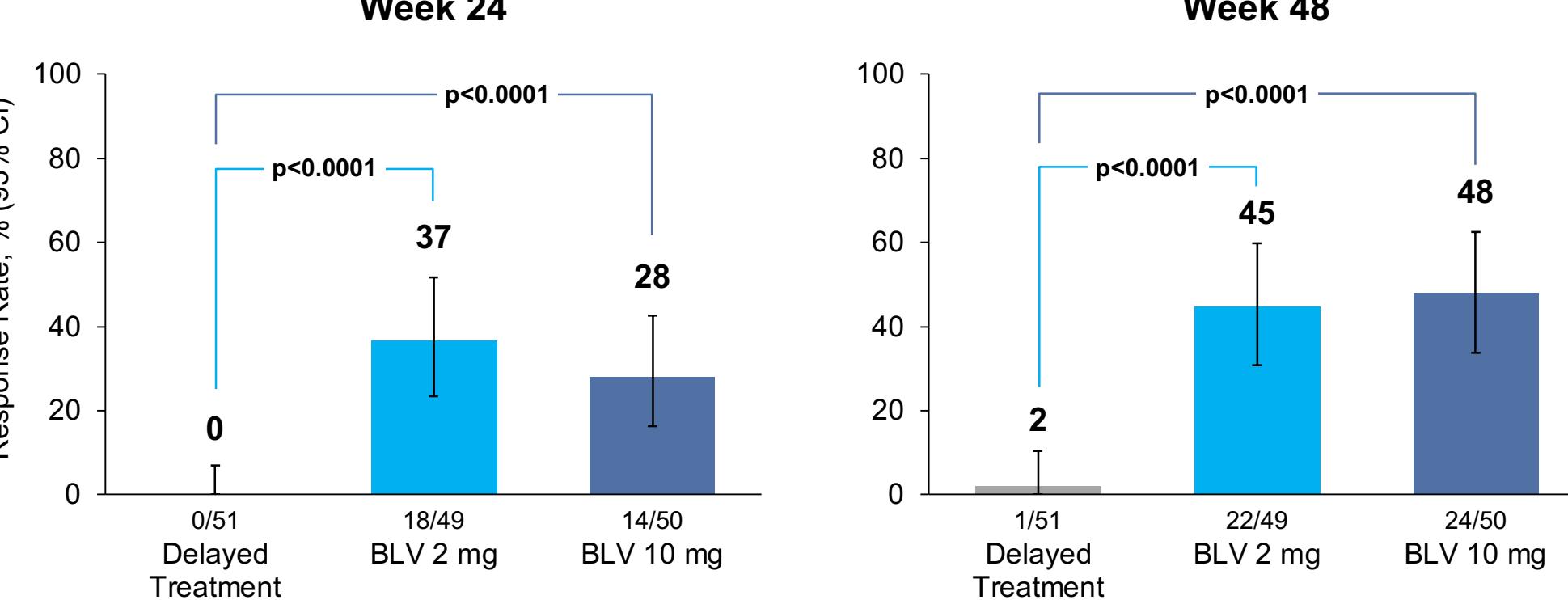
- Combined response at Week 24 (key)
- Undetectable HDV RNA at Weeks 24 and 48 (key)
- ALT normalization at Weeks 24 and 48
- Change in liver stiffness (transient elastography) at Week 48
- HDV RNA undetectable after EOT

Undetectable HDV RNA defined as below limit of detection: 6 IU/mL; ALT normalization defined as: ≤ 31 ULN for females and ≤ 41 ULN for males (Russia sites); ≤ 34 ULN for females and ≤ 49 ULN for males (all other sites). Final analysis set. Statistical analyses: difference in response rates between treatment groups was calculated using Fisher exact test. CPT: Child-Pugh-Turcotte; EOS, end of study; EOT, end of treatment; ULN, upper limit of normal.


Results

Demographics and Disease Characteristics

	Delayed Treatment: n=51	BLV 2 mg: n=49	BLV 10 mg: n=50
Mean age, years (SD)	40.5 (7.5)	43.6 (9.0)	41.3 (8.5)
Male sex, n (%)	26 (51)	30 (61)	30 (60)
Race, n (%)	White 40 (78) Asian 11 (22) Black or African American 0	41 (84) 8 (16) 0	43 (86) 6 (12) 1 (2)
Cirrhosis, n (%)	24 (47)	23 (47)	24 (48)
Mean platelets, $10^9/L$ (SD)	158 (57)	153 (53)	160 (53)
Mean liver stiffness, kPa (SD)	15.3 (8.9)	14 (8.2)	14.8 (9.3)
Mean ALT, U/L (SD)	102 (62)	108 (63)	123 (81)
Mean (SD) HDV RNA, \log_{10} IU/mL	5.08 (1.36)	5.10 (1.21)	4.96 (1.46)
HDV genotype, n (%) n (%) [*]	1 51 (100) 5 0	49 (100) 0	48 (96) 1 (2)
Mean HBsAg, \log_{10} IU/mL (SD)	3.68 (0.47)	3.67 (0.52)	3.61 (0.59)
Mean HBV DNA, \log_{10} IU/mL (SD)	0.89 (0.99)	1.28 (1.30)	1.07 (1.27)
HBsAg positive, n (%)	4 (8)	4 (8)	7 (14)
HBV genotype, n (%)	A 4 (8) D 39 (77) E 0 Missing 8 (16)	1 (2) 44 (90) 0 4 (8)	3 (6) 41 (82) 1 (2) 5 (10)
Previous IFN therapy, n (%)	29 (57)	26 (53)	29 (58)
Concomitant NUC treatment, n (%)	32 (63)	31 (63)	27 (54)


^{*}1 patient in the BLV 10-mg group had missing HDV genotype. HBsAg, hepatitis B e antigen; IFN, interferon; IQR, interquartile range; NUC, nucleos(t)ide; SD, standard deviation.

MYR301 Patient Disposition

– Five patients were withdrawn from the study through 48 weeks, none due to AEs

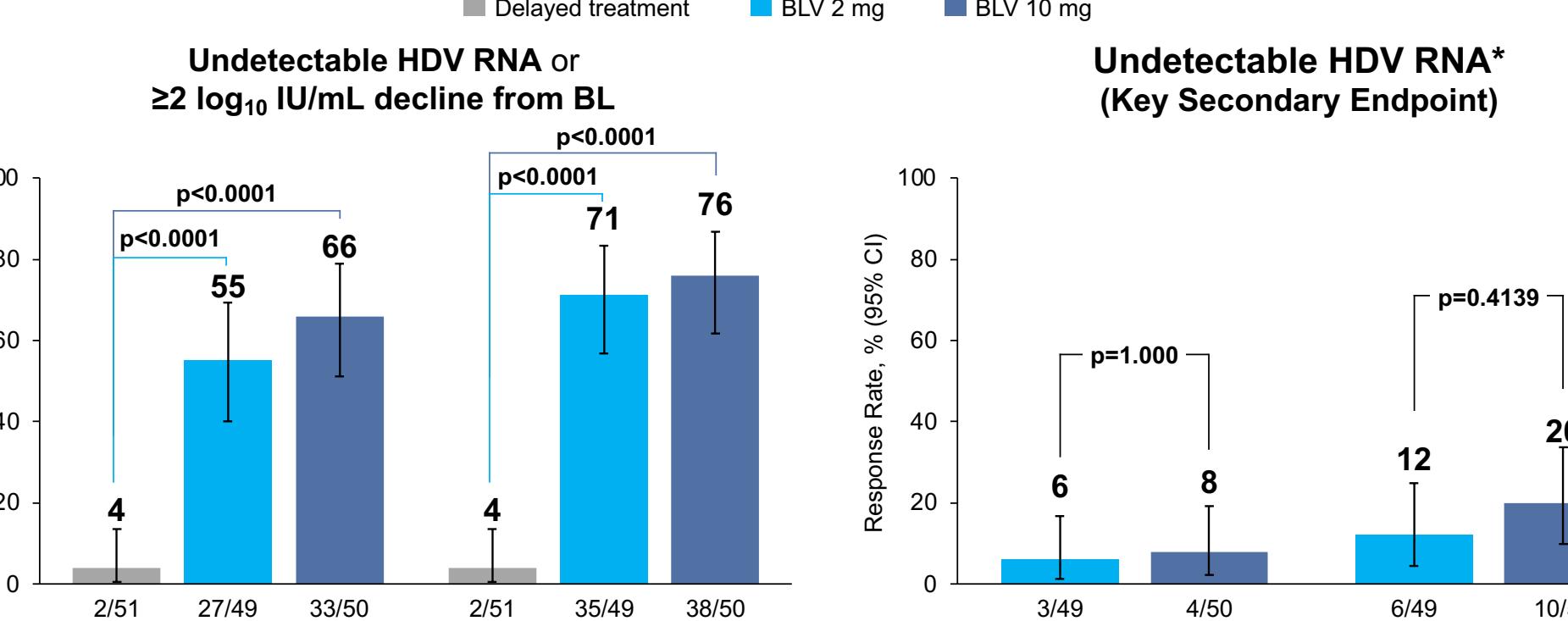
Primary Endpoint: Combined Response

– The rates of combined response in BLV arms were similar and significantly higher compared to control

Combined response defined as undetectable HDV RNA or $\geq 2 \log_{10}$ IU/mL decline from BL and ALT Normalization
Undetectable HDV RNA defined as below LOD (6 IU/mL); ALT ULN: ≤ 31 ULN for females and ≤ 41 ULN for males (Russia sites); ≤ 34 ULN for females and ≤ 49 ULN for males (all other sites). CI, confidence interval.

Combined Response at Week 48 by Subgroups

BLV 2 mg vs Delayed Treatment

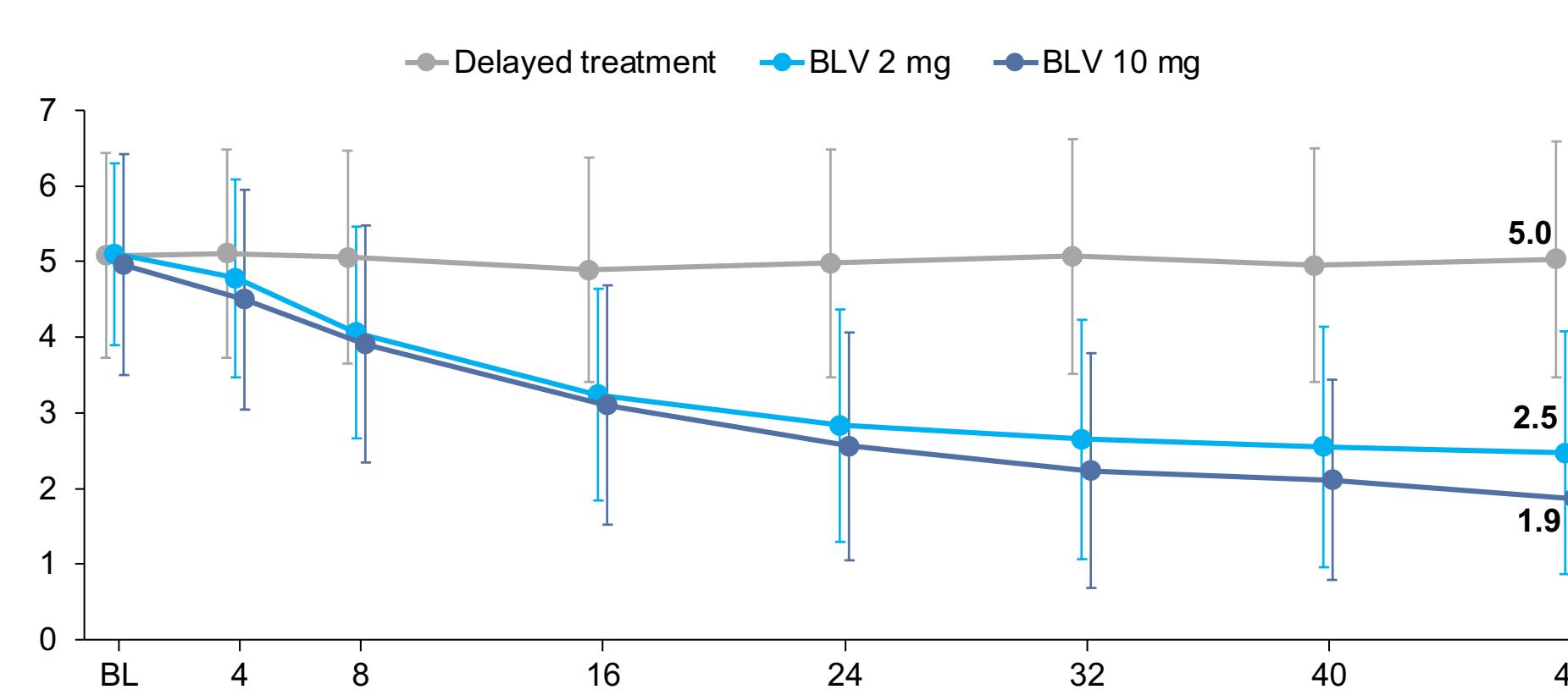


– Treatment benefit was consistent across all subgroups, including patients with cirrhosis

– Similar findings observed with BLV 10 mg treatment

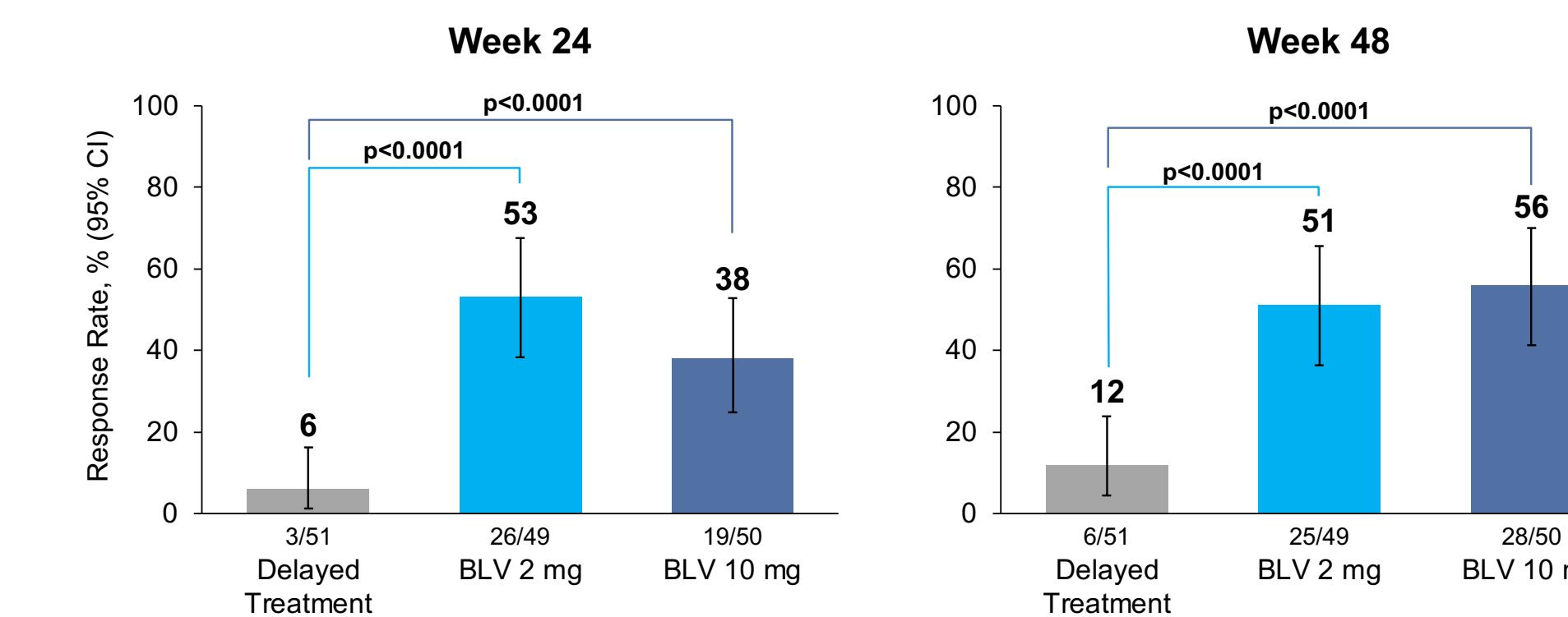
* One patient from BLV 2 mg group was excluded from baseline HDV RNA subgroup analysis due to absent baseline HDV RNA value

Secondary Virologic Endpoints

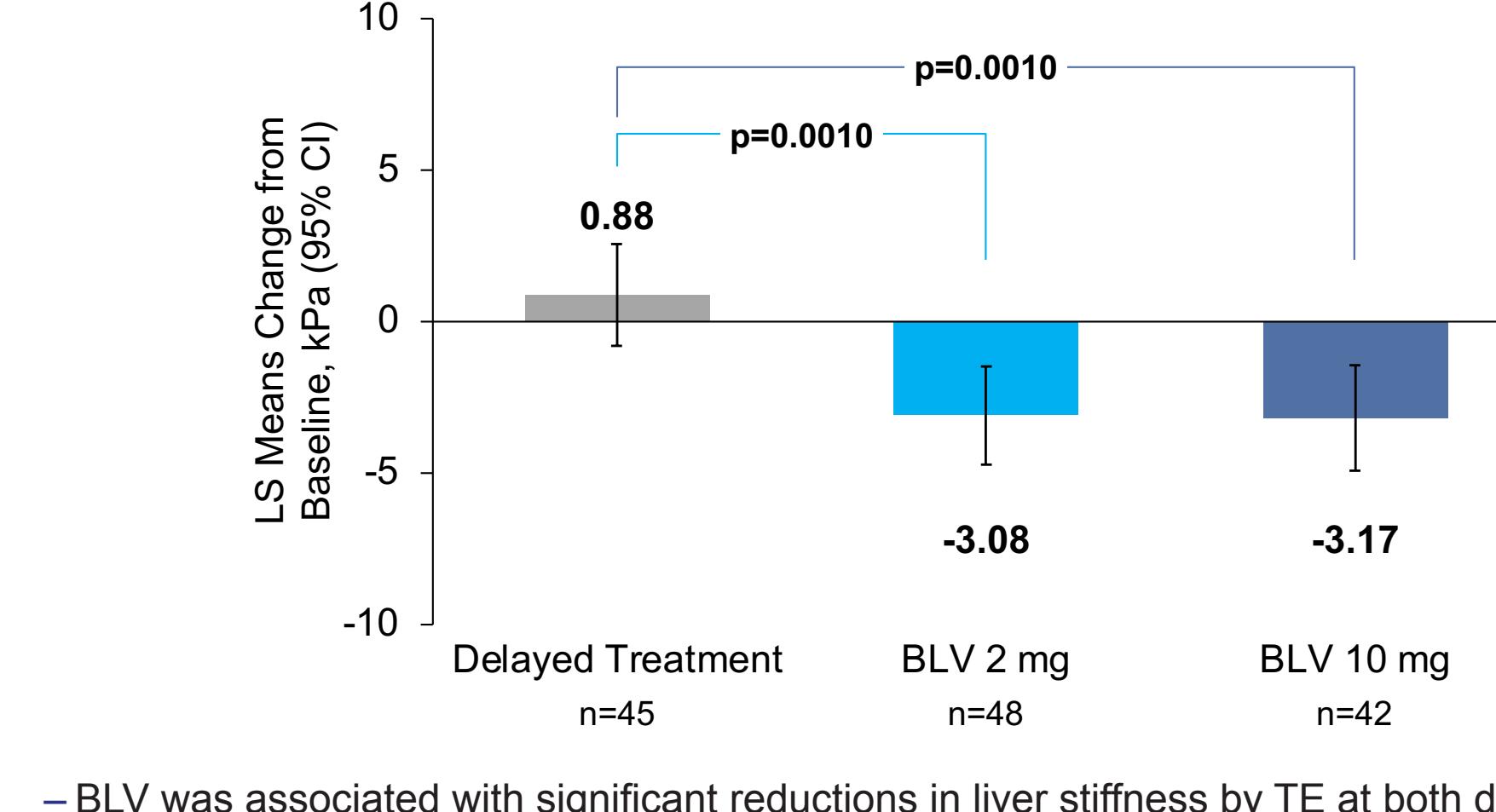


– The rates of viral response in BLV arms were significantly higher compared to control

– No significant difference in complete viral suppression between 2 mg and 10 mg of BLV


*No patients from Delayed Treatment group achieved Undetectable HDV RNA at any visit
Undetectable HDV RNA defined as below LOD (6 IU/mL)

HDV RNA Decline Over 48 Weeks


– Mean HDV RNA levels progressively declined to a similar degree over 48 weeks in both BLV groups

ALT Normalization at Weeks 24 and 48

– The rates of biochemical response in BLV arms were significantly higher compared to control
ALT ULN: ≤ 31 ULN for females and ≤ 41 ULN for males (Russia sites); ≤ 34 ULN for females and ≤ 49 ULN for males (all other sites).

Change in Liver Stiffness at Week 48

– BLV was associated with significant reductions in liver stiffness by TE at both dose levels vs delayed treatment

LS, least-squares; TE, transient elastography.

HBV Efficacy Endpoints at Week 48

	Delayed Treatment n=51	BLV 2 mg n=49	BLV 10 mg n=50
HBsAg loss, n (%)	0	0	0
HBsAg response: $>1 \log_{10}$ IU/mL decrease, n (%)	1 (2)	0	0
LS mean change in HBsAg, \log_{10} IU/mL (95% CI)	0.006 (-0.085, 0.097)	0.053 (-0.041, 0.147)	0.115 (0.019, 0.211)
P-value vs delayed treatment	—	0.210	0.008
Patients with HBV DNA positivity at baseline and no concomitant NUC treatment, n	12	13	13
Mean change from BL in HBV DNA, \log_{10} IU/mL (SD)	-0.15 (0.655)	-0.42 (0.599)	-0.88 (0.690)

– No patients in any group experienced HBsAg loss and changes in HBsAg levels were minimal

– Small declines in HBV DNA levels were observed with BLV treatment, including in patients not on NUC treatment

Total Serum Bile Acids Over 48 Weeks